A new strategy for specific imaging of neural cells based on peptide-conjugated gold nanoclusters
نویسندگان
چکیده
Despite the significant progress in molecular imaging technologies that has been made in recent years, the specific detection of neural cells still remains challenging. Here, we suggest the use of gold nanoclusters (AuNCs) modified with a brain-targeting peptide as a potential imaging candidate for detecting neural cells in vitro and in mice. AuNCs of less than 10 nm (dynamic light scattering analysis) were first prepared using the "green" synthetic approach, and then a targeting peptide, rabies virus glycoprotein derived peptide (RDP), was conjugated to the AuNCs for improving the efficiency and specificity of neural cell penetration. The conjugate's mechanism of cellular attachment and entry into neural cells was suggested to be receptor-mediated endocytosis through clathrin-coated pits. Also, noninvasive imaging analysis and animal studies indicated that the RDP-modified nanoclusters could concentrate in the brain and locate in neural cells. This study suggests the feasibility of using targeting peptide-modified nanoclusters for noninvasive imaging brain cells in vivo.
منابع مشابه
Effect of Peptide Derived from Scorpion Toxin on Enhanced Permeability of Doxorubicin Conjugated Gold Nanoparticles in HeLa and MDA-MB-231 Cells
Background: Cell penetrating peptides (CPPs) can enter a cell through the cell membrane, and used in the fields of drug delivery, gene therapy, and cancer therapy by their property transporting various molecules into cytoplasm. Gold nanospheres (GNSs) are a useful tool for molecular imaging, because they are not cytotoxic and have high solubility, excellent light scattering property and ease of...
متن کاملAS1411 Aptamer Conjugated Gold Nanoclusters as a Targeted Radiosensitizer for Megavoltage Radiation Therapy of 4T1 Breast Cancer Cells
Introduction: In the present study, AS1411 aptamer conjugated gold nanoclusters (GNCs) have been introduced as a targeted radiosensitizer for enhancing megavoltage radiation therapy efficacy. RT has identified as an effective therapeutic modality for many different types of solid tumors. However, equal radiation beams absorption by tumor and surrounding healthy tissues is still...
متن کاملFolate-Conjugated Gold Nanoparticles (Synthesis, Characterization and Design for Cancer Cells Nanotechnology-based Targeting)
A new folate-conjugated gold nanoparticle (AuNP) has been designed to selectively target the folate receptor that is overexpressed on the surface of tumoral cells. For this purpose, we made 4-aminothiophenol, as a bifunctional linker to react with HAuCl4 in the presence of sodium borohydride and it was binded to the AuNP surface through its thiol group. Then, we conjugated amino-terminated nano...
متن کاملNew peptide based freeze-dried kit [99mTc-HYNIC]-UBI 29-41 as a human specific infection imaging agent
Introduction: Ubiquicidin 29-41 (UBI) is a fragment of the cationic antimicrobial peptide that is present in various species including humans. The purpose of this study was to investigate radiochemical and biological characteristics of [6-hydrazinopyridine-3-carboxylic acid (HYNIC)]-UBI 29-41 designed for the labeling with 99mTc using tricine as coligand....
متن کاملA 99mTc-tricine-HYNIC-labeled Peptide Targeting the Melanocortin-1 Receptor for Melanoma Imaging
Melanocortin-1 (MC1) receptor is an attractive melanoma-specific target for the development of α-MSH peptide based imaging and therapeutic agents. In this work a new lactam bridge α-MSH analogue was synthesized and radiolabeled with 99mTc via HYNIC chelator and tricine as co-ligand. Also, stability in human serum, receptor bound internalization and tissue biodistribution in tumor bearing nude m...
متن کامل